Il virus respiratorio sinciziale umano, dopo la pandemia di Covid-19

Contenuto principale dell'articolo

Leonardo Borgese

Abstract

Il virus respiratorio sinciziale umano (hRSV) è la causa principale di infezione delle vie respiratorie alte e basse nella popolazione pediatrica, ma può colpire gravemente anche gli anziani e, in generale, gli adulti con pregresse patologie croniche, soprattutto di natura cardiaca e polmonare.

Downloads

I dati di download non sono ancora disponibili

Dettagli dell'articolo

Come citare
[1]
Borgese, L. 2023. Il virus respiratorio sinciziale umano, dopo la pandemia di Covid-19. Italian Journal of Prevention, Diagnostic and Therapeutic Medicine. 6, 4 (dic. 2023), 12-19. DOI:https://doi.org/10.30459/2023-19.
Sezione
Aggiornamenti

Riferimenti bibliografici

Quotidiano Nazionale (2023). Virus sinciziale, a Roma isolato il primo caso italiano. L’esperto: “Sta cominciando l’epidemia stagionale”. 6 nov. 2023. https://www.quotidiano.net/cronaca/virus-sinciziale-roma-respiratorio-bg7km01k

Blount R E Jr, Morris J A, Savage R E (1956), Recovery of cytopathogenic agent from chimpanzees with coryza. Proc. Soc. Exp. Biol. Med., 92: 544–549

Chanock R, Roizman B, Myers R (1957). Recovery from infants with respiratory illness of a virus related to chimpanzee coryza agent (CCA). I. Isolation, properties and characterization. Am. J. Hyg., 66: 281–290

Krusat T, Streckert H J (1997). Heparin-dependent attachment of respiratory syncytial virus (RSV) to host cells Arch.. Virol., 142: 1247-1254

Lamb E R A (1993). Paramyxovirus fusion: a hypothesis for changes. Virology, 197: 1-11

Gan S W, Ng L, Xin L, Gong X, Torres J (2008). Structure and ion channel activity of the human respiratory syncytial virus (hRSV) small hydrophobic protein transmembrane domain. Protein Sci., 17(5): 813-820

Gan SW, Tan E, Lin X, Yu D, Wang J, Tan GM-Y, Vararattanavech A, Yeo C Y, Soon C H, Soong T W, Pervushin K, Torres J (2012). The small hydrophobic protein of the human respiratory syncytial virus forms pentameric ion channels. J. Biol. Chem., 287: 24671-24689

Li Y, Jain N, Limpanawat S, To J, Quistgaard EM, Nordlund P, Thanabalu T, Torres J. (2015). Interaction between human BAP31 and respiratory syncytial virus small hydrophobic (SH) protein. Virology. 482: 105-110

Bukreyev A, Whitehead S S, Murphy B R, Collins Pl (1997). Recombinant respiratory syncytial virus from which the entire SH gene has been deleted grows efficiently in cell culture and exhibits site-specific attenuation in the respiratory tract of the mouse. J. Virol., 71: 8973-8982

Fuentes F, Tran K C, Luthra P, Teng M N, He B (2007). Function of the respiratory syncytial virus small hydrophobic protein. J. Virol., 81: 8361-8366

Jin H, Zhou H, Cheng X, Tang R, Munoz M, Nguyen N (2000). Recombinant respiratory syncytial viruses with deletions in the NS1, NS2, SH, and M2-2 genes are attenuated in vitro and in vivo. Virology, 273: 210-218

Karron R A, Buonagurio D A, Georgiu A F, Whitehead S S, Adamus J E, Clements-Mann M L, Harris D O, Randolph V B, Udem S A, Murphy B R, Sidhu M S (1997). Respiratory syncytial virus (RSV) SH and G proteins are not essential for viral replication in vitro: clinical evaluation and molecular characterization of a cold-passaged, attenuated RSV subgroup B mutant. Proc. Natl. Acad. Sci. USA, 94: 13961-13966

Whitehead S S, Bukreyev A, Teng M N, Firestone St C Y, Claire M, Elkins W R, Collins P L, Murphy B R (1999). Recombinant respiratory syncytial virus bearing a deletion of either the NS2 or SH gene is attenuated in chimpanzees. J. Virol., 73: 3438-3442

Olmsted R A, Collins P L (1989). The 1A protein of respiratory syncytial virus is an integral membrane protein present as multiple, structurally distinct species. J. Virol., 63: 2019–2029

Collins P L, Mottet G (1993). Membrane orientation and oligomerization of the small hydrophobic protein of human respiratory syncytial virus. J. Gen. Virol., 74: 1445–1450

Rixon H W, Brown G, Murray J T, Sugrue R J (2005). The respiratory syncytial virus small hydrophobic protein is phosphorylated via a mitogen-activated protein kinase p38-dependent tyrosine kinase activity during virus infection. J. Gen. Virol., 86: 375–384

Rixon H W, Brown G, Aitken J, McDonald T, Graham S, Sugrue R J (2004). The small hydrophobic (SH) protein accumulates within lipid-raft structures of the Golgi complex during respiratory syncytial virus infection. J. Gen. Virol., 85: 1153-1165

Perez M, García-Barreno B, Melero J A, Carrasco L, Guinea R (1987). Membrane permeability changes induced in Escherichia coli by the SH protein of human respiratory syncytial virus. Virology, 235: 342–351

Gonzalez M E, Carrasco L (2003). Viroporins. FEBS Lett., 552: 28–34

Szabo I, Adams C, Gulbins E (2004). Ion channels and membrane rafts in apoptosis. Pflugers Arch. 448: 304–312

Lang F, Foller M, Lang, K S, Lang P A, Ritter M, Gulbins E, Vereninov A, Huber S M (2005). Ion channels in cell proliferation and apoptotic cell death. J. Membr. Biol. 205: 147–157

Burg E D, Remillard C V, Yuan J X J (2006). K+ channels in apoptosis. J. Membr. Biol. 209: 3–20

Ng F W H, Nguyen M,Kwan T, Branton P E, Nicholson D W, Cromlish J A, Shore G C (1997). p28 Bap31, a Bcl-2/Bcl-X(L)- and procaspase-8-associated protein in the endoplasmic reticulum. J. Cell Biol., 139: 327-338

Ng F W H, Shore G C (1998). Bcl-X(L) cooperatively associates with the Bap31 complex in the endoplasmic reticulum, dependent on procaspase-8 and Ced-4 adaptor. J. Biol. Chem., 273: 3140-3143

Breckenridge D C, Stojanovic M, Marcellus R C, Shore G C (2003).Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol., 160: 1115-1127

Rosati F, Sabatini R, Rampino G, De Falco F, Di Ianni M, Falzetti F, Fettucciari K, Bartoli A, Screpanti I, MarconiP (2010). Novel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL. Blood, 116: 2713-2723

Castagné N, Barbier A, Bernard J, Rezaei H, Huet JC, Henry C, Costa BD, Eléouët JF (2004). Biochemical characterization of the respiratory syncytial virus P-P and P-N protein complexes and localization of the P protein oligomerization domain. J Gen Virol., 85(6): 1643-1653

Piedimonte G, Perez M K (2014). Respiratory syncytial virus infection and bronchiolitis. Pediatr. Rev., 35: 519-530

Chi H, Chang I S, Tsai F Y, et al (2011). Epidemiological study of hospitalization associated with respiratory syncytial virus infection in Taiwanese children between 2004 and 2007. J. Formos. Med. Assoc., 110: 388–396

Nair H, Nokes D J, Gessner B D, et al (2010). Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet, 375: 1545–1555

Navas L, Wang E, de Carvalho V, Robinson J (1992). Improved outcome of respiratory syncytial virus infection in a high-risk hospitalized population of Canadian children. Pediatric Investigators Collaborative Network on Infections in Canada. J Pediatr., 121: 348–354

Gilca R, De Serres G, Tremblay M, et al (2006). Distribution and clinical impact of human respiratory syncytial virus genotypes in hospitalized children over 2 winter seasons. J. Infect. Dis.. 193: 54–58

Fletcher J N, Smyth R L, Thomas H M, Ashby D, Hart C A (1997). Respiratory syncytial virus genotypes and disease severity among children in hospital. Arch. Dis. Child.. 77: 508–511

Imaz M S, Sequeira M D, Videla C, et al (2000). Clinical and epidemiologic characteristics of respiratory syncytial virus subgroups A and B infections in Santa Fe, Argentina. J Med Virol., 61: 76–80

Glezen W P, Taber L H, Frank A L, Kasel J A (1986). Risk of primary infection and reinfection with respiratory syncytial virus. Am. J. Dis. Child., 140: 543–546

Henderson F W, Collier A M, Clyde W A Jr, Denny F W (1979). Respiratory-syncytial-virus infections, reinfections and immunity. A prospective, longitudinal study in young children. N. Engl. J. Med., 300: 530–534

Glezen W P, Paredes A, Allison J E, Taber L H, Frank A L (1981). Risk of respiratory syncytial virus infection for infants from low-income families in relationship to age, sex, ethnic group, and maternal antibody level. J. Pediatr., 98: 708–715

Yildiz M, Kara M, Sutcu M, et al (2020). Evaluation of respiratory syncytial virus IgG antibody dynamics in mother-infant pairs cohort. Eur. J. Clin. Microbiol. Infect. Dis., 39: 1279-1286

Hall C B, Long C E, Schnabel K C (2001). Respiratory syncytial virus infections in previously healthy working adults. Clin. Infect. Dis., 33: 792–796

Nenna R, Matera L, Pierangeli A, Oliveto G, Viscido A, Petrarca L, La Regina DP, Mancino E, Di Mattia G, Villani A, Midulla F (2022). First COVID-19 lockdown resulted in most respiratory viruses disappearing among hospitalised children, with the exception of rhinoviruses. Acta Paediatr., 111(7): 1399-1403

Yeoh D K, Foley D A, Minney-Smith C A, Martin A C, Mace A O, Sikazwe C T, Le H, Levy A, Blyth C C, Moore H C (2021). Impact of Coronavirus Disease 2019 Public Health Measures on Detections of Influenza and Respiratory Syncytial Virus in Children During the 2020 Australian Winter. Clin. Infect. Dis., 72(12): 2199-2202

Di Mattia G, Mancino E, Petrarca L, Matera L, Frassanito A, Conti M G, Pierangeli A, Nenna R, Midulla F (2022). L’epidemiologia del virus respiratorio sinciziale dopo la pandemia Covid-19. Area Ped., 23(2): 90-92

Poole S, Brendish N J, Clark T W (2020). SARS-CoV-2 has displaced other seasonal respiratory viruses: results from a prospective cohort study. J. Infect., 81: 966-72

Foley D A, Yeoh D K, Minney-Smith C A, Martin A C, Mace A O, Sikazwe C T, Le H, Levy A, Moore H C, Blyth C C (2021). The Interseasonal Resurgence of Respiratory Syncytial Virus in Australian Children Following the Reduction of Coronavirus Disease 2019-Related Public Health Measures. Clin. Infect. Dis., 73(9): e2829-e2830

Mondal P, Sinharoy A, Gope S (2022). The Influence of COVID-19 on Influenza and Respiratory Syncytial Virus Activities. Infect. Dis. Rep., 14: 134-141

Pappa S, Haidopoulou K, Zarras C, Theodorakou E, Papadimitriou E, Iosifidis E, Gkeka I, Stoikou K, Vagdatli E, Skoura L, Papa A (2022). Early initiation of the respiratory syncytial virus season in 2021-2022, Greece. J. Med. Virol., 94(7): 3453-3456

Carlone G, Graziano G, Trotta D, Cafagno C, Aricò MO, Campodipietro G, Marabini C, Lizzi M, Fornaro M, Caselli D, Valletta E, Aricò M (2023). Bronchiolitis 2021-2022 epidemic: multicentric analysis of the characteristics and treatment approach in 214 children from different areas in Italy. Eur. J. Pediatr., 182(4): 1921-1927

Indolfi G, Resti M, Zanobini A - Associazione Ospedali Pediatrici Italiani Research Group on Bronchiolitis (2022). Outbreak of Respiratory Syncytial Virus Bronchiolitis in Italy.

Clin. Infect. Dis., 75(3): 549-550